INTRODUCTION TO BIOSTATISTICS

How to read the standard normal table

(Table A.3 of Principles of Biostatistics, Pagano, M. and Gauvreau, K.)

When reading a normal table, we take advantage of the following features of the normal distribution:

- The **symmetry** of the standard normal curve around zero (its mean). Thus, \(P(Z \geq z) = P(Z \leq -z) \), where \(z \geq 0 \).
- The fact that (as in any distribution) the area under the curve is equal to 1. Thus, \(\{Z \geq z\} \) and \(\{Z \geq z\} \) are two complementary events, \(P(Z \geq z) = 1 - P(Z \leq z) \).

We are usually faced with two problems:

1. Given a number \(z \geq 0^1 \) (say) find \(p \) such that the following is true:

 1.1. \(P(Z \geq z) = p \) Read \(p \) directly from standard normal table\(^2\).
 1.2 \(P(Z \leq -z) = p \) Read \(p_1 = P(Z \geq z) \) from the normal table
 \(p = p_1 \) (by the symmetry of the normal distribution).
 1.3 \(P(Z \leq z) = p \) Read \(p_1 = P(Z \geq z) \) from the normal table: \(p = 1 - p_1 \).
 Notice that \(\{Z \geq z\} \) and \(\{Z \leq z\} \) are complementary events.
 1.4 \(P(Z \geq -z) = p \) Read \(p_1 = P(Z \geq z) \) from the normal table: \(p = 1 - p_1 \).

 Now assume that \(z_1 \leq z_2 \):

 1.5 \(P(z_1 \leq Z \leq z_2) = p \) Calculate \(p_1 = P(Z \geq z_1) \) (if \(z_1 \geq 0 \) refer to 1.1, if \(z_1 < 0 \) refer to 1.4) and \(p_2 = P(Z \geq z_2) \) (if \(z_2 \geq 0 \) refer to 1.1,
 if \(z_2 < 0 \) refer to 1.4); then \(p = p_1 - p_2 \)

 Special case: \(z > 0 \)

 \(P(-z \leq Z \leq z) \) Read \(p_1 = P(Z \geq z) \) from the normal table \(p = 1 - 2p_1 \).
 Notice that this is the **central** part of the distribution.

2. Given a probability \(p \) find \(z \) such that the following is true:

 2.1 \(P(Z \geq z) = p \)

 If \(p \leq 0.5 \) Then \(z \geq 0 \): Look up \(p \) in table. \(z \) is the closest number\(^3\).

 If \(p \geq 0.5 \) Then \(z \leq 0 \): Look up \(p_1 = 1 - p \) in the table. Locate the closest number. \(z \) is its negative.

 2.2 \(P(Z \leq z) = p \)

 If \(p \leq 0.5 \) Then \(z \leq 0 \): Look up \(p \) in table. Locate the closest number. \(z \) is its negative.

 If \(p \geq 0.5 \) Then \(z \geq 0 \): Look up \(p_1 = 1 - p \) in the table. \(z \) is the closest number.

 2.3 \(P(-z \leq Z \leq z) = p \) Look up \(p_1 = (1 - p)/2 \) in the table. \(z \) is the closest number. \(-z \) is its negative.

\(^1\) Recall that capital \(Z \) is the (normally distributed) random variable, while \(z \) is the values it assumes.

\(^2\) The \(p \) corresponding to \(z \) is read by going “down” in the table as many lines as it’s necessary to approach \(z \) as closely as possible (without going over), and then going “across” on the same line, as many columns as it’s necessary to approach \(z \) as closely as possible (without going over).

\(^3\) The “closest number” \(z \) corresponding to a given \(p \) is found by adding the number in the left margin of the line where \(p \) is located in the table, to the number at the top margin of the column where \(p \) is located in the table.