Confidence Intervals
Statistical Inference

- Inferences regarding a population are made based on a sample
 - Inferences about population parameters (e.g., \(\mu \)) are made by examining sample statistics (e.g., sample mean)
Statistical Inference

- Statistical Inference
 - 2 primary approaches
 - Hypothesis Testing (of a population parameter)
 - Estimation (of a population parameter)
 - Point Estimation
 - Sample mean is an estimate of the population mean
 - Interval Estimation
 - Confidence Intervals

- Hypothesis Testing vs. Estimation
 - Closely related
Confidence Interval

- A range of values associated with a parameter of interest (such as a population mean or a treatment effect) that is calculated using the data, and will cover the TRUE parameter with a specified probability (if the study was repeated a large number of times)
Confidence Interval (CI)

- Based on sample statistics (estimates of population parameters)
- The width of the CI provides some information regarding the precision of the estimate
- Provides both a range of plausible values and a test for the parameter of interest
Confidence Interval

- Roughly speaking: an interval within which we expect the true parameter to be contained.
- Based on the notion of repeated sampling (similar to hypothesis testing)
Confidence Interval

- The “percent” indicates the probability (based on repeated sampling) that the CI covers the TRUE parameter
 - Not the probability that the parameter falls in the interval
 - The CI is the random entity (that depends on the random sample)
 - The parameter is fixed
 - A different sample would produce a different interval, however the parameter of interest remains unchanged.
Illustration

- We are analyzing a study to determine if a new drug decreases LDL cholesterol.
 - We measure the LDL of 100 people before administering the drug and then again after 12 weeks of treatment.
 - We then calculate the mean change (post-pre) and examine it to see if improvement is observed.
Illustration

- Assume now that the drug has no effect (i.e., the true mean change is 0). Note that in reality, we never know what the true mean is.
- We perform the study and note the mean change and calculate a 95% CI.
- Hypothetically, we repeat the study an infinite number of times (each time re-sampling 100 new people).
Illustration

- Study 1, Mean = -7, 95% CI (-12, 2)
- Study 2, Mean = -2, 95% CI (-9, 5)
- Study 3, Mean = 4, 95% CI (-3, 11)
- Study 4, Mean = 0, 95% CI (-7, 7)
- Study 5, Mean = -5, 95% CI (-12, 2)
Illustration

- Remember the true change is zero (i.e., the drug is worthless)
- 95% of these intervals will cover the true change (0).
 - 5% of the intervals will not cover 0
- In practice, we only perform the study once.
- We have no way of knowing if the interval that we calculated is one of the 95% (that covers the true parameter) or one of the 5% that does not.
Example

- Two treatments are being compared with respect to "clinical response" for the treatment of nosocomial (hospital-acquired) pneumonia.
- The 95% CI for the difference in response rates for the two treatment groups is (-0.116, 0.151).
- What does this mean?
Example (continued)

- Based upon the notion of repeated sampling, 95% of the CIs calculated in this manner would cover the true difference in response rates.
 - We do not know if we have one of the 95% that covers the true difference or one of the 5% that does not.
- Thus we are 95% confident that the true between-group difference in the proportion of subjects with clinical response is between -0.116 and 0.151.
Caution

- Thus, every time that we calculate a 95% CI, then there is a 5% chance that the CI does not cover the quantity that you are estimating.
 - If you perform a large analyses, calculating many CIs for many parameters, then you can expect that 5% of the will not cover the parameters of interest.
CIs and Hypothesis Testing

- To use CIs for hypothesis testing: values between the limits are values for which the null hypothesis would not be rejected

 - At the "=0.05 level:

 - We would fail to reject H_0: treatment change=0 since 0 is contained in (-0.116, 0.151)

 - We would reject H_0: treatment change=-20 since -20 is not contained in (-0.116, 0.151)
CIs and Hypothesis Testing

- What would be the conclusion of these hypothesis tests if we wanted to test at \(\alpha = 0.01 \) or \(\alpha = 0.10 \)?
Confidence Interval Width

- It is desirable to have narrow CIs
 - Implies more precision in your estimate
 - Wide CIs have little meaning

- In general, with all other things being equal:
 - Smaller sample size \rightarrow wider CIs
 - Higher confidence \rightarrow wider CIs
 - Larger variability \rightarrow wider CIs
In Practice

- It is a good idea to provide confidence intervals in an analyses
 - They provide both a test and an estimate of the magnitude of the effect (which p-values do not provide)
For Illustration

- Consider the neuropathy example (insert neuropathy_example.pdf)
- Sensitivity 48.5
 - w/ 95% CI (36.9, 60.3)
CIs

- Similar to hypothesis testing:
 - We may choose the confidence level (e.g., 95% → " = 0.05)
 - CIs may be:
 - 1-sided: (-4, value) or (value, 4), or
 - 2-sided (value, value)
CIs

- Some things to think about
 - Scale of the variable(s): continuous vs. binary (next class)
 - 1-sample vs. 2-sample
 - CI for a population mean
 - CI for the difference between 2 population means
 - σ known or unknown
CIs

- Insert CI1.pdf