Welcome!

- Introductions
 - Instructor
 - Class
- About this course
- What is Image-Based Modeling and Rendering?
- Course topics and course outline
Hanspeter Pfister, Ph.D.
Research Scientist

MERL - Mitsubishi Electric Research Laboratory
Cambridge Research Center
201 Broadway
Cambridge, MA 02139

Direct: (617) 621-7566
Main: (617) 621-7500
Fax: (617) 621-7550
Internet: pfister@merl.com

Swiss citizen
MS in EE from ETH Zürich, Switzerland
PhD in CS from SUNY Stony Brook
Worked for the last 6 years at MERL
 - Chief architect of VolumePro
 • http://www.terarecon.com/
More than a decade of fun in graphics
 - Image-based Rendering
 - 3D Scanning
 - Point-based Graphics
 - Graphics hardware
 - Scientific visualization
About you...

- Your name
- Where do you work / study / hang out?
- Are you in the Extension School ALM/CAS program?
- Programming experience
- Previous experience in computer graphics
- What you expect to learn in this course

TAs

- TAs? We don’t need no stinkin’ TAs!
- Well… that means you are on your own!
- Make active use of the mailing list
- Look up resources on the web
- Google should become your best friend
- Read papers and (maybe) books in addition to the class readings
Outline

- Introductions
 - Instructor
 - Class

- About this course
 - What is Image-Based Modeling and Rendering?
 - Course topics and course outline

Meeting Times

- Wednesdays, 7:00 - 8:30 pm, here at MERL
- 5-10 minute break
- 15 classes (until May 14)
What is this course about?

- This is a study group for image-based modeling and rendering (IBMR).
- Very (!) informal gatherings each week.
- We will read some of the relevant papers in IBMR.
- You will present papers in class.
- You complete an IBMR project throughout the course.
- We’ll have some fun!

What do you need to know?

- Programming in C/C++
 - At least 2-3 years of working experience
- Computer graphics and OpenGL
 - CSCI E-234 or equivalent
 - See http://courses.dce.harvard.edu/~cscie234/
- Linear algebra
 - What we covered in CSCI E-234
Course Web Page

- http://courses.dce.harvard.edu/~indre399/

Mailing List

- **URL:** https://lists.dce.harvard.edu/mailman/listinfo/indre399
- Post message: indre399@lists.dce.harvard.edu
- Please sign up this week.
- Send an email to the list with a link to an IBMR web page and a brief description what it is.
Registration

- Print the Harvard paper enrollment form (link is on course web page)
- Enroll for course INDR E-399, "CAS Independent Research", catalog #20302
 - Fee $1425.-
- No need to enroll in the ALM/CAS program! (sorry)
- After you pick your course project, send an email about it to Henry Leitner (leitner@harvard.edu)
- This course counts as an elective course at the Harvard Extension School

Your homework

- Weekly reading assignments
 - Two 8-10 page papers or more each week
- Paper presentations
 - Two or more presentations throughout the course
 - Read the paper(s), prepare the PPT slides, give the talk
 - 30 minutes each, including 10 minutes Q&A
- Course project
 - Choose from a list of projects in the next two weeks
 - Hand in two project milestones (to get you going)
 - Project due date: May 14, 2003
 - Final project presentation: May 21, 2003
Grading

- All grades are given as points between 0 and 100
- The final grade is a weighted sum of:
 - Class and mailing list participation: 10%
 - Paper presentations: 20%
 - Project milestones: 20%
 - Final project: 50%
- The letter grade is assigned as follows:
 - 95-100 points: A
 - 90 - 94 points: A-
 - 85 - 89 points: B+
 - 80 - 84 points: B
 - 75 - 79 points: B-
 - 70 - 74 points: C+ etc.

Academic Honesty

- You absolutely must **acknowledge** any code that was **not** written by you. Preferably, you make a mention of the original source directly in your source (.h/.cpp) files. You can also acknowledge them in your README.txt file if you used whole classes or libraries.
- Without prior written approval by the instructor you may not submit the same material to two courses.
- Plagiarism, cheating, and other forms of academic dishonesty will be reported to the Dean and can have very serious consequences.
- If you have any questions about the use of source code derived from other sources please contact the course instructor.
Outline

- Introductions
 - Instructor
 - Class
- About this course
- What is Image-Based Modeling and Rendering?
- Course topics and course outline

SIGGRAPH '99 Course

Traditional Modeling and Rendering

For Photorealism:

Modeling is Hard Rendering is Slow

Paul Debevec, http://www.debevec.org
Can we model and render this?
What do we want to do with the model?

Paul Debevec, http://www.debevec.org

Stereo Image Pair
Depth Map

SIGGRAPH '99 Course

Immersion '94
Michael Naimark
John Woodfill
Paul Debevec
Leo Villareal
Interval Research
Corporation

Stereo Image Capture Rig

Paul Debevec, http://www.debevec.org

SIGGRAPH '99 Course

Image-Based Modeling and Rendering

Images, user input, range scans

Model

Images

Image-Based Modeling
Image-Based Rendering

Paul Debevec, http://www.debevec.org
Image-Based **Modeling**

Images (photographs, renderings) are used to determine
- Scene Appearance
- Scene Geometry
- Lighting
- Reflectance Characteristics
- Kinematic Properties

=> *Modeling scenes photorealistically is easier*

Paul Debevec, http://www.debevec.org
The Spectrum of IBMR

![Image-Based Models Spectrum](image_url)

Model: Kinematics, etc.

Image-Based Modeling: Images, renderings, user inputs, range maps

Geometry + Materials: Geometry + Images

Images + Depth: Light Field, Movie Map

Panorama

Image

Image-Based Models: What do they allow?

<table>
<thead>
<tr>
<th>Model</th>
<th>Movement</th>
<th>Geometry</th>
<th>Lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry + Materials</td>
<td>Continuous</td>
<td>Global</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Geometry + Images</td>
<td>Continuous</td>
<td>Global</td>
<td>Fixed</td>
</tr>
<tr>
<td>Images + Depth</td>
<td>Continuous</td>
<td>Local</td>
<td>Fixed</td>
</tr>
<tr>
<td>Light Field</td>
<td>Continuous</td>
<td>None</td>
<td>Fixed</td>
</tr>
<tr>
<td>Movie Map</td>
<td>Discrete</td>
<td>None</td>
<td>Fixed</td>
</tr>
<tr>
<td>Panorama</td>
<td>Rotation</td>
<td>None</td>
<td>Fixed</td>
</tr>
<tr>
<td>Image</td>
<td>None</td>
<td>None</td>
<td>Fixed</td>
</tr>
</tbody>
</table>

Paul Debevec, http://www.debevec.org
SIGGRAPH '99 Course

Leonard McMillan

SIGGRAPH '99 Course

Computer Graphics

Michael Cohen
But, vision technology falls short

... and so does graphics.
IBMR Applications

- Advertisement (image morphing)
- Image Mosaics (travel industry, QuickTime VR)
- Virtualized Reality (tele-conferencing, etc.)
- Entertainment (movies, games, etc.)
- Web3D (e-commerce, etc.)
- Virtual actors
- Visualization (volume visualization, etc.)
- 3D reconstruction and modeling (architecture, design, etc.)
- Material scanning
- Hmm, sounds like computer graphics...
Welcome!

- Introductions
 - Instructor
 - Class
- About this course
- What is Image-Based Modeling and Rendering?
- Course topics and course outline

This Course

- We will talk about computer vision
 - Computer graphics: Given a 3D model, render it
 - Computer vision: Given images, create a 3D model
- We will talk about images and models
 - Depth images, layered depth images (LDIs), LDI trees, etc.
 - Sprites and 3D point models
 - Visual hulls, voxel models, polygon models etc.