1 Which compounds give rise to four 1H-NMR signals?

A. II and IV
B. I and III
C. II and V
D. I and IV

2 What is the correct order of the chemical shifts of the indicated hydrogens in the molecule at right?

A. downfield $H_a < H_d < H_c < H_b$ upfield
B. downfield $H_c < H_b < H_d < H_a$ upfield
C. downfield $H_b < H_c < H_d < H_a$ upfield
D. downfield $H_d < H_c < H_a < H_b$ upfield

3 Which, if any, is the theoretically expected 1H-NMR splitting pattern of the indicated hydrogen in the molecule at right?

A. dddq
B. dtq
C. sextet
D. None of the preceding

4 Which of these compounds are aromatic?

A. I and II
B. II and V
C. II and IV
D. III and V

5 Which compound is least likely to be useful in a crossed Claisen reaction with CH$_3$CO$_2$CH$_2$CH$_3$ in the presence of NaOCH$_2$CH$_3$?

A. CH$_3$CH$_2$CO$_2$CH$_2$CH$_3$
B. PhCO$_2$CH$_2$CH$_3$
C. HCO$_2$CH$_2$CH$_3$
D. CH$_3$CH$_2$O$_2$CCO$_2$CH$_2$CH$_3$
6 Which substituents activate the benzene ring toward electrophilic aromatic substitution?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Br</td>
<td>II.</td>
<td>CC(\text{OCl})</td>
</tr>
<tr>
<td>V.</td>
<td>Si Me_3</td>
<td>VI.</td>
<td>CH=CH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IV. B(\text{CH}_3)_2</td>
</tr>
</tbody>
</table>

A I, II and VII B III, V and VI C II, IV and V D IV, VI and VIII

7 Which alkene reacts most rapidly with HCl?

![Alkenes](image)

A B C D

8 What is the best method for carrying out this transformation?

![Transformation](image)

A (1) Cl_2, AlCl_3; (2) KMnO_4; (3) Br_2, Fe
B (1) KMnO_4; (2) Br_2, Fe; (3) Cl_2, AlCl_3
C (1) KMnO_4; (2) Cl_2, AlCl_3; (3) Br_2, Fe
D (1) Cl_2, AlCl_3; (2) Br_2, Fe; (3) KMnO_4
9 Which molecule undergoes electrophilic aromatic substitution most rapidly?

10 Compound X is optically active. Compound X reacts with H₂ over a Pd catalyst to afford optically inactive C₁₀H₂₂; Compound X reacts with H₂ over the Lindlar catalyst to afford optically active C₁₀H₁₈; and Compound X reacts with Na in NH₃(ℓ) to afford optically inactive C₁₀H₁₈. What is Compound X?

11 All but one of these reactions affords two enantiomers in equal amounts. Which reaction affords a single product?
12 What is the correct ranking of these carbocations by stability?

I.
II.
III.
IV.

A III > II > IV > I
B I > IV > III > II
C I > II > IV > III
D II > IV > III > I

13 In view of the product distribution shown below, which of these statements is true concerning the mechanism of the reaction?

A Two different cyclic chloronium cations are intermediates.
B A carbocation can be ruled out as an intermediate.
C A carbocation and a cyclic chloronium cation are intermediates.
D A cyclic chloronium cation can be ruled out as an intermediate.

14 Which of these molecules reacts with OH^-?

I.
II.
III.
IV.
V.
VI.

A II, III, IV and VI
B I, III, V and VI
C I, II, IV and V
D II, IV and V
15 What is the correct ranking of these compounds by the reactivity of the carbonyl carbon toward addition of a nucleophile?

![Chemical structures](image)

A IV > II > I > III
B III > II > IV > I
C III > II > I > IV
D I > IV > II > III

16 Which of the following is the most thermodynamically stable tautomer of the compound at right?

![Chemical structures](image)

A
B
C
D

17 Which molecule, when treated with acid, cyclizes to afford the molecule at right?

![Chemical structures](image)

A
B
C
D
18 Which compound can be most efficiently prepared by an aldol reaction?

A 3-hydroxy-2-methyl-1-phenyl-1-propanone
B 3-hydroxy-3-phenylbutanal
C 4-hydroxy-3,4-dimethyl-1-phenyl-2-pentanone
D 4-hydroxy-4-phenyl-2-pentanone

19 In the reaction at right O* represents oxygen-18. Which compounds, if any, are intermediates in this reaction?

A I, III and IV
B I and IV
C I, II and IV
D None of the compounds are intermediates.

20 What is the product of the reaction at right?

A
B
C
D

(1) EtOK
(2) H⁺
Answers

1 B
2 C
3 A
4 C
5 A
6 B
7 C
8 A
9 C
10 D
11 A
12 C
13 C
14 B
15 D
16 B
17 A
18 A
19 D
20 B